Learning in Three Dimensions
HP/Educause have published an interesting report on extended reality (XR). XR is a wide range of technologies along a continuum, with the real world at one end and fully immersive simulations at the other. The HP/EDUCAUSE Campus of the Future project explored the efforts of 11 colleges and universities to investigate the ways that augmented reality (AR), virtual reality (VR), and 3D scanning and printing technologies can benefit teaching, learning, and research.
This report describes a wide range of pedagogical uses of 3D tech in higher education, from augmenting experiences in the physical world to creating simulations of things that are inaccessible in the physical world, and from designing virtual things that may be made into physical things to repeating experiences virtually that cannot be repeated in the physical world. The report also discusses hurdles in implementing 3D technology and the possible future of 3D technology in higher education, and it makes recommendations—in terms of technical requirements, support needs, and organizational policies—for institutions wishing to deploy 3D technology on campus.
The key findings of the report:
- 3D technologies give users virtual superpowers. In a virtual reality (VR) simulation, a user can fly like Iron Man, have superstrength like Wonder Woman, and walk through walls like Kitty Pryde. VR and augmented reality (AR) give users X-ray vision like Superman’s. VR and 3D printing give users the ability to manipulate very small objects, like Ant-Man and the Wasp; to manipulate energy, like Magneto; and to create objects from empty space, like Doctor Manhattan and Elsa of Arendelle.
- VR is like being there. A well-constructed simulation is visceral: One’s intellectual and physiological reactions to objects and events in VR are similar—and sometimes identical—to one’s reactions in the physical world.
- VR and AR are multisensory experiences. Much VR and AR development focuses on the visual functionality of those technologies, but they are capable of more. The auditory functionality of VR and the haptic functionality of both VR and AR are critical for creating a realistic simulation.
- 3D technologies enable active and experiential learning. Virtual reality simulations enable users to interact in a space or around an object in ways beyond what is possible in the real world. Augmented reality enables users to interact with an object while possessing “superpowers,” such as the ability to see through surfaces or to see data overlying objects. With 3D printing, users can quickly create physical objects that might otherwise exist only in simulations. These functionalities enable users to gain hands-on experience with objects that might otherwise be inaccessible in teaching and learning contexts.
- Simulations enable individual practice and skill-building. In the medical professions, for example, VR enables students to repeat hands-on experiences that might not otherwise be possible (e.g., repeating a dissection multiple times) and to experience events that they might not otherwise be able to (e.g., diagnosing a rare condition, testing specific types of emergency medicine). Through repeated practice, students emerge more skilled.
- Simulations enable high-touch, high-cost learning experiences to be scaled up. While developing a simulated lab may be expensive, it is far less expensive than building and maintaining a physical lab. Furthermore, a simulated lab can be made available to individuals who are not co-located. VR and 3D printing therefore make it possible to provide lab experiences to a far greater number of users, perhaps even simultaneously.
- 3D technologies foster and sometimes require collaboration between campus units. The deployment of new technologies often fosters new collaborations across campus. Supporting users of 3D technology on campus requires a range of expertise, which encourages (if not requires) collaboration between campus IT units and instructional designers. The use of 3D technology has also fostered collaborations involving students and faculty across academic disciplines.
- Training is critical. Some early adopters on campus will teach themselves to use 3D technology, but many campus users will need support to learn to use this technology. The development of training sessions and workshops on 3D technology–related topics is critical for these technologies to gain traction on campus beyond the rarefied circles of early adopters.
- It takes time for the benefits of 3D technology to be realized on campus. While 3D technology is getting easier to use, it must still be set up and configured; software must be installed and possibly updated. Furthermore, users need time to learn to use the technology, and instructors need time to figure out how to use the technology in their teaching. Courses take months to be redesigned. The first year of deployment of 3D technology may be largely devoted to learning to use and integrate it into teaching and support practices; it may take until year two for the full benefits of using 3D technology on campus to be realized.
The report gives a good overview of current activities in the field of extended reality. On the website there is a lot of additional content.
Reference
- Pomerantz, Jeffrey. Learning in Three Dimensions: Report on the EDUCAUSE/HP Campus of the Future Project. ECAR research report. Louisville, CO: EDUCAUSE, August 2018.
No feedback yet
Form is loading...